Main Page/SlicerCommunity/2022

From Slicer Wiki
Revision as of 20:28, 5 January 2022 by Marianna (talk | contribs) (→‎2022)
Jump to: navigation, search
Home < Main Page < SlicerCommunity < 2022

Go to 2022 :: 2021 :: 2020 :: 2019 :: 2018 :: 2017 :: 2016 :: 2015 :: 2014-2011 :: 2010-2000



The community that relies on 3D Slicer is large and active: (numbers below updated on December 1st, 2023)

  • 2,147+ papers on PubMed citing the Slicer platform paper
    • Fedorov A., Beichel R., Kalpathy-Cramer J., Finet J., Fillion-Robin J-C., Pujol S., Bauer C., Jennings D., Fennessy F.M., Sonka M., Buatti J., Aylward S.R., Miller J.V., Pieper S., Kikinis R. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network. Magnetic Resonance Imaging. 2012 Nov;30(9):1323-41. PMID: 22770690. PMCID: PMC3466397.


The following is a sample of the research performed using 3D Slicer outside of the group that develops it. in 2022

We monitor PubMed and related databases to update these lists, but if you know of other research related to the Slicer community that should be included here please email: marianna (at) bwh.harvard.edu.

2022

The Relationship of LDH and Hematological Parameters with Ischemic Volume and Prognosis in Cerebrovascular Disease

Publication: J Coll Physicians Surg Pak. 2022 Jan;32(1):42-45. PMID: 34983146

Authors: Alatlı T, Kocaoglu S, Akay E.

Institution: Department of Emergency, Faculty of Medicine, Balikesir University, Balikesir, Turkey.

Abstract: Objective: To determine whether lactate dehydrogenase (LDH), platelet-lymphocyte ratio (PLR), neutrophil-lymphocyte ratio (NLR), and lymphocyte-monocyte ratio (LMR) values can be used as a prediction for their relationship with stroke volume (SV) and for in-hospital mortality in stroke patients in Emergency Department (ED).

Study design: Analytical study.

Place and duration of study: Balikesir University, Turkey from 24/03/2021 to 30/06/2021.

Methodology: Patients aged 18 years or older, diagnosed with stroke in ED, were included in the study. Stroke volumes were calculated from diffusion-weighted images (DWi) with 3D Slicer software using image-based semi-automatic and manual segmentation methods.

Results: Of the 265 patients, 128 (48.3%) were males. SV was significantly higher in the non-survivor group than in the survivor group (p=0.007). NLR was significantly higher in the non-survivor group than in the survivor group (p=0.018).

Conclusion: The ratios of NLR and SV stand out as practical parameters for the estimation of mortality, prognosis, and management of patients diagnosed with acute stroke. Taking into account, these parameters in the diagnosis process and prognosis management in EDs will provide convenience.

Translation and Rotation Analysis Based on Stress MRI for the Diagnosis of Anterior Cruciate Ligament Tears

Publication: Quant Imaging Med Surg. 2022 Jan; 12(1): 257–68.

Authors: Klon W, Domżalski M, Malinowski K,Sadlik B

Institution: St Luke’s Hospital, Bielsko-Biała, Poland.

Abstract: Due to the increasing need for a detailed biomechanical analysis of anterior cruciate ligament (ACL) lesions, the aim of the study was to develop a method of direct measurement of the three-dimensional tibial translation and rotation based on stress MRI.

Methods For the purpose of the study, thirty patients with acute ACL rupture and 17 healthy control subjects were selected. Based on clinical examination, they were qualified for MRI examination using the Arthroholder Device prototype to perform anterior tibial translation. Each examination was performed at 30° of knee flexion, initially without tibia translation and then using the force applied to the calf of 80 N. The femur and tibia were separately registered using rigid local SimpleITK landmark refinement; translation and rotation parameters were then calculated using the 3D transformation algorithms. The significance level was set at 0.05.

Results Initially, the device and method for obtaining the parameters of the 3D translation and rotation were validated. The pooled Standard Deviation for translation parameters was 0.81 mm and for rotation parameters 0.87°. Compared to the control group, statistically significant differences were found in parameters such as Anterior Shift [(median ± interquartile range) 3.89 mm ±6.55 vs. 0.90 mm ±2.78, P=0.002238] and External Rotation (−0.55° ±3.88 vs. −2.87° ±2.40, P=0.005074). Statistically significant correlations were observed in combined groups between Anterior Shift and parameters such as External Rotation (P=0.001611), PCL Tibial Attachment Point (pPCL) Anterior Shift (<0.000001), Rolimeter Measurement (P=0.000016), and Side-to-Side Difference (SSD) (P=0.000383). A significant statistical correlation was also observed between External Rotation and parameters such as Rolimeter (P=0.02261) and SSD (P=0.03458).

Conclusions The analysis of the anterior tibia translation using stress MRI and the proposed three-dimensional calculation method allows for a detailed analysis of the tibial translation and rotation parameters. The correlations showed the importance of external rotation during anterior tibial translation.