Difference between revisions of "Slicer3:Python:DemianExamples"
From Slicer Wiki
Line 1: | Line 1: | ||
+ | =Introduction= | ||
+ | |||
+ | Demian Wassermann developed a set of tutorial slides and examples for using python and numpy in Slicer3. | ||
+ | |||
=Median Filter in a Masked Region= | =Median Filter in a Masked Region= | ||
Revision as of 13:38, 18 September 2008
Home < Slicer3:Python:DemianExamplesIntroduction
Demian Wassermann developed a set of tutorial slides and examples for using python and numpy in Slicer3.
Median Filter in a Masked Region
XML = """<?xml version="1.0" encoding="utf-8"?> <executable> <category>Demo Scripted Modules</category> <title>Masked median filtering</title> <description> Perform median filtering over a masked section of an image </description> <version>1.0</version> <documentation-url></documentation-url> <license></license> <contributor>Demian Wassermann</contributor> <parameters> <label>IO</label> <description>Input/output parameters</description> <image type = "scalar" > <name>inputVolume</name> <longflag>inputVolume</longflag> <label>Input Image</label> <channel>input</channel> <description>Input image to be filtered</description> </image> <integer> <name>medianFilterRadius</name> <longflag>medianFilterRadius</longflag> <label>Radius of the median filter</label> <default>2</default> <step>1</step> <channel>input</channel> <constraints> <minimum>2</minimum> <maximum>100</maximum> </constraints> </integer> <image type="label"> <name>inputMaskVolume</name> <longflag>inputMaskVolume</longflag> <label>Input Mask Volume</label> <channel>input</channel> <description>Input mask to work on it</description> </image> <integer> <name>labelToUse</name> <longflag>labelToUse</longflag> <label>Label to use for the mask</label> <default>1</default> <step>1</step> <channel>input</channel> <constraints> <minimum>0</minimum> <maximum>255</maximum> </constraints> </integer> <image type = "scalar"> <name>outputFilteredVolume</name> <longflag>outputFilteredVolume</longflag> <label>Output Image</label> <channel>output</channel> <description>Image that was median filtered</description> </image> </parameters> </executable> """ from Slicer import slicer from scipy import ndimage import numpy def Execute(\ inputVolume = "",\ medianFilterRadius = 0,\ inputMaskVolume = "",\ labelToUse = 1,\ outputFilteredVolume = ""\ ): # Set up the slicer environment scene = slicer.MRMLScene # Get the nodes from the MRML tree inputVolumeNode = scene.GetNodeByID( inputVolume ) inputMaskVolumeNode = scene.GetNodeByID( inputMaskVolume ) outputFilteredVolumeNode = scene.GetNodeByID( outputFilteredVolume ) # Set up the output node setupTheOutputNode( inputVolumeNode, outputFilteredVolumeNode ) #maskToImageIJK = maskIJKToImageIJKMatrix( inputVolumeNode, inputMaskVolumeNode ) # Do what we are here to do input_array = inputVolumeNode.GetImageData().ToArray() output_array = outputFilteredVolumeNode.GetImageData().ToArray() mask_array = inputMaskVolumeNode.GetImageData().ToArray() pointsToProcess = numpy.transpose(numpy.where( mask_array == labelToUse )) print pointsToProcess # Get the bounding box minCorner = pointsToProcess.min(0) # yeah yeah there's a border problem maxCorner = pointsToProcess.max(0)+1 # Perform the filtering medianFiltered = ndimage.median_filter(\ input_array[\ minCorner[0]:maxCorner[0],\ minCorner[1]:maxCorner[1],\ minCorner[2]:maxCorner[2],\ ], medianFilterRadius ) # Set it to the output node output_array[:]=input_array output_array[ tuple(pointsToProcess.T) ] = medianFiltered[ tuple((pointsToProcess-minCorner).T) ] outputFilteredVolumeNode.Modified() def setupTheOutputNode( inputVolumeNode, outputFilteredVolumeNode ): inputVolumeNode_imageData = inputVolumeNode.GetImageData() outputFilteredVolume_ImageData = outputFilteredVolumeNode.GetImageData() if not outputFilteredVolume_ImageData: outputFilteredVolume_ImageData = slicer.vtkImageData() outputFilteredVolumeNode.SetAndObserveImageData( outputFilteredVolume_ImageData ) dimensions = inputVolumeNode_imageData.GetDimensions() outputFilteredVolume_ImageData.SetDimensions( dimensions[0], dimensions[1], dimensions[2] ) outputFilteredVolume_ImageData.SetScalarType( inputVolumeNode_imageData.GetScalarType() ) outputFilteredVolume_ImageData.SetOrigin( 0, 0, 0 ) outputFilteredVolume_ImageData.SetSpacing( 1, 1, 1 ) outputFilteredVolume_ImageData.AllocateScalars() matrix = slicer.vtkMatrix4x4() inputVolumeNode.GetIJKToRASMatrix( matrix ) outputFilteredVolumeNode.SetIJKToRASMatrix( matrix ) outputFilteredVolumeNode.Modified() #def maskIJKToImageIJKMatrix( inputVolumeNode, inputMaskVolumeNode ): # # InputTransformNode = inputInputVolumeNode.GetParentTransformNode() # if InputTransformNode==[]: # InputTransformNode="" # MaskTransformNode = inputMaskVolumeNode.GetParentTransformNode() # if MaskTransformNode==[]: # MaskTransformNode="" # # matrixMaskToInputIJK = slicer.vtkMatrix4x4() # # if ( MaskTransformNode!="" ): # MaskTransformNode.GetMatrixTransformToNode( InputTransformNode, matrixMaskToInputIJK ) # elif ( InputTransformNode!="" ): # InputTransformNode.GetMatrixTransformToNode( MaskTransformNode, matrixMaskToInputIJK ) # matrixMaskToInputIJK.Invert() # # # #