Difference between revisions of "Documentation/Nightly/Extensions/DensityLungSegmentation"

From Slicer Wiki
Jump to: navigation, search
Tag: 2017 source edit
Tag: 2017 source edit
Line 9: Line 9:
 
{{documentation/{{documentation/version}}/module-introduction-start|{{documentation/modulename}}}}
 
{{documentation/{{documentation/version}}/module-introduction-start|{{documentation/modulename}}}}
 
{{documentation/{{documentation/version}}/module-introduction-row}}
 
{{documentation/{{documentation/version}}/module-introduction-row}}
Extension: [[Documentation/{{documentation/version}}/Extensions/ImageCompare|ImageCompare]]<br>
+
Extension: [[Documentation/{{documentation/version}}/Extensions/LungDensitySegmentation|LungDensitySegmentation]]<br>
 
Author: Paolo Zaffino, Magna Graecia Univeristy of Catanzaro - Italy<br>
 
Author: Paolo Zaffino, Magna Graecia Univeristy of Catanzaro - Italy<br>
 
Contributor1: Maria Francesca Spadea, Magna Graecia Univeristy of Catanzaro - Italy<br>
 
Contributor1: Maria Francesca Spadea, Magna Graecia Univeristy of Catanzaro - Italy<br>

Revision as of 13:33, 31 August 2021

Home < Documentation < Nightly < Extensions < DensityLungSegmentation


For the latest Slicer documentation, visit the read-the-docs.


Introduction and Acknowledgements

Extension: LungDensitySegmentation
Author: Paolo Zaffino, Magna Graecia Univeristy of Catanzaro - Italy
Contributor1: Maria Francesca Spadea, Magna Graecia Univeristy of Catanzaro - Italy
Contact: Paolo Zaffino, <email>p.zaffino@unicz.it</email>

This extension is for labeling lung tissue CT according to intensity.

Module Description

  • Lung Density Segmentation: This module, given a chest CT, labels lung tissue according to intensity. It can be used for pneumonia (COVID-19 too).


Use Cases

  • Lung Density Segmentation

User wants to segmente lung tissue according to intensity (healthy, ground-glass opacities, and consolidation).

Lung Density Segmentation module

Tutorials

  • Lung Density Segmentation
1. Load chest CT
2. Select/create a labelmap for the result
3. Select/create a labelmap for the averaged result
4. Click Apply button

Panels and their use

Synthetic CT Evaluation module UI

Similar Modules

References

  • Zaffino, Paolo, et al. "An Open-Source COVID-19 CT Dataset with Automatic Lung Tissue Classification for Radiomics." Bioengineering 8.2 (2021): 26.


Information for Developers

https://github.com/pzaffino/SlicerLungDensitySegmentation