Difference between revisions of "Documentation/4.3/Modules/FastGrowCut"

From Slicer Wiki
Jump to: navigation, search
(Created page with '<noinclude>{{documentation/versioncheck}}</noinclude> <!-- ---------------------------- --> {{documentation/{{documentation/version}}/module-header}} <!-- -----------------------…')
 
(Added tutorial link)
 
Line 46: Line 46:
 
{{documentation/{{documentation/version}}/module-section|Module Description}}
 
{{documentation/{{documentation/version}}/module-section|Module Description}}
  
This is a fast implementation of the GrowCut method. It supports multi-label segmentation and user online interactions. Please see the references below for more details.
+
This is a fast implementation of the GrowCut method. The algorithm uses example segmentation to create a full segmentation of the volume. It supports multi-label segmentation and user online interactions. Please see the references below for more details.
  
 
<!--Here comes a description what the module is good for. Explain briefly how it works and point to the [[documentation/{{documentation/version}}/Modules/{{documentation/modulename}}#References|references]] giving more details on the algorithm.
 
<!--Here comes a description what the module is good for. Explain briefly how it works and point to the [[documentation/{{documentation/version}}/Modules/{{documentation/modulename}}#References|references]] giving more details on the algorithm.
 
If you are documenting a CLI, the description should be extracted from the corresponding XML description. This could be done automatically using the following wiki template:<pre>{{documentation/{{documentation/version}}/module-description}}
 
If you are documenting a CLI, the description should be extracted from the corresponding XML description. This could be done automatically using the following wiki template:<pre>{{documentation/{{documentation/version}}/module-description}}
 
{{documentation/{{documentation/version}}/module-description}} -->
 
{{documentation/{{documentation/version}}/module-description}} -->
 
 
 
 
 
 
 
  
 
<!-- ---------------------------- -->
 
<!-- ---------------------------- -->
<!-- {{documentation/{{documentation/version}}/module-section|Use Cases}}
 
N/A -->
 
 
 
 
 
 
  
<!-- ---------------------------- -->
 
 
{{documentation/{{documentation/version}}/module-section|Tutorials}}
 
{{documentation/{{documentation/version}}/module-section|Tutorials}}
  
 
+
[[media:FastGrowCutTutorial.pdf | Click here]] for a tutorial on using the Fast GrowCut effect.
Step 1.) Add data volume to segment
 
 
 
[[File:LoadMeningioma.png|500px]]
 
 
 
 
 
Step 2.) Go to the “Editor” module, select the volume loaded in Step 1 as the “Master Volume” in the “Create and Select Label Maps” drop-down menu
 
 
 
[[File:StartEditorMeningioma.png|500px]]
 
 
 
 
 
Step 3.) Select the “FastGrowCutEffect” effect in the “Edit Selected Label Map” drop-down menu
 
 
 
[[File:FastGrowCutEffect.png|50px]]
 
 
 
 
 
Step 4.) Press the “Start Fast GrowCut” button ( FastGrowCut is now running in the background until the “Stop FastGrowCut” button is pressed)
 
 
 
[[File:StartBotMeningioma.png|500px]]
 
 
 
 
 
Step 5.) Turn “On” all three slice views in the 3D Plane
 
 
 
[[File:TurnOnSlices3DMeningioma.png|500px]]
 
 
 
Step 6.) Initialize the segmentation using fast GrowCut
 
* (a) go to PaintEffect to draw seed regions (label 1 for foreground and 2 for background), then press 'G' to run fast GrowCut.
 
[[File:FGCSeed.png|500px]] [[File:FGCSeg1.png|500px]]
 
 
 
* (b) If not satified, press 'S' to toggle between seed image and segmentation result. Edit on the seed image to reduce over/under segmentaions.
 
[[File:FGCSeed2.png|500px]]
 
 
 
* (c) Once finished editing on the seed image, press 'G' to run fast GrowCut again.
 
[[File:FGCSeg2.png|500px]]
 
 
 
The steps 6 (b) and (c) may be repeated a couple of times until satisfied.
 
  
 
<!-- ---------------------------- -->
 
<!-- ---------------------------- -->

Latest revision as of 14:00, 14 June 2016

Home < Documentation < 4.3 < Modules < FastGrowCut


For the latest Slicer documentation, visit the read-the-docs.





Introduction and Acknowledgements

This work is part of the National Alliance for Medical Image Computing (NA-MIC), funded by the National Institutes of Health through the NIH Roadmap for Medical Research, Grant U54 EB005149. Information on NA-MIC can be obtained from the NA-MIC website.

Author: Liangjia Zhu, Stony Brook University
Contributor: Ivan Kolesov, Stony Brook University
Contributor: Yi Gao, University of Alabama Birmingham
Contributor: Peter Karasev, Georgia Institute of Technology
Contributor: Ron Kikinis, BWH
Contributor: Allen Tannenbaum, Stony Brook University
Contact: Liangjia Zhu, <email>liangjia.zhu@stonybrook.edu</email>






Module Description

This is a fast implementation of the GrowCut method. The algorithm uses example segmentation to create a full segmentation of the volume. It supports multi-label segmentation and user online interactions. Please see the references below for more details.


Tutorials

Click here for a tutorial on using the Fast GrowCut effect.

Multi-Label Segmentation Examples

The module supports multi-label segmentations. Two examples are shown below.

  • Brain ventricle and tumor segmentation

FGC Brain Seed.png

1) Seed image

FGC Brain Seg.png

2) Segmentation results

  • Heart chamber segmentation

FGC Heart Seed.png

1) Seed image

FGC Heart Seg.png

2) Segmentation results

Similar Modules

References

  • Liangjia Zhu, Ivan Kolesov, Yi Gao, Ron Kikinis, Allen Tannenbaum. An Effective Interactive Medical Image Segmentation Method Using Fast GrowCut, International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Interactive Medical Image Computing Workshop, 2014 (submitted).

Information for Developers