Difference between revisions of "Documentation/Nightly/Extensions/PBNRR"

From Slicer Wiki
Jump to: navigation, search
Line 71: Line 71:
 
<!-- ---------------------------- -->
 
<!-- ---------------------------- -->
 
{{documentation/{{documentation/version}}/module-section|Similar Modules}}
 
{{documentation/{{documentation/version}}/module-section|Similar Modules}}
 +
*[[Documentation/Nightly/Modules/BRAINSFit]]
 +
  
 
<!-- ---------------------------- -->
 
<!-- ---------------------------- -->

Revision as of 16:17, 20 June 2014

Home < Documentation < Nightly < Extensions < PBNRR


For the latest Slicer documentation, visit the read-the-docs.


Introduction and Acknowledgements

Extension: Physics-Based Non-Rigid Registration (PBNRR)
Acknowledgments: This work is funded mainly by the ARRA funds for the ITK-v4 implementation with grant number:NLMA2D2201000586P. In addition, this work is supported in part by NSFgrants:CCF-1139864, CCF-1136538, and CSI-1136536 and by the John Simon Guggenheim Foundation and the Richard T.Cheng Endowment.
Author: Fotis Drakopoulos
Contributors: Fotis Drakopoulos (CRTC), Yixun Liu (CRTC), Andriy Kot (CRTC), Andrey Fedorov (SPL B&W Harvard), Olivier Clatz (Asclepios INRIA), Nikos Chrisochoides (CRTC)
Contact: Nikos Chrisochoides, <email>npchris@gmail.com</email>
Website: https://crtc.cs.odu.edu/joomla/
License: BSD

Center for Real-time Computing  

Module Description

The module Non-Rigid Registers a moving to a fixed MRI. It uses a linear homogeneous bio-mechanical model to compute a dense deformation field that defines a transformation for every point in the fixed image to the moving image. The method includes three components (Feature Point Selection, Block Matching and Finite Element Solver) combine together to provide a user-friendly interface.

Use Cases

Case1 Input; top left: moving image, top right: mesh, bottom left: fixed image, bottom right: mask image.
Case1 Output; top left: warped image, top right: warped mesh, bottom left: direct deformation field, bottom right: inverse deformation field.
Case2 Input; top left: moving image, top right: mesh, bottom left: fixed image, bottom right: mask image.
Case2 Output; top left: warped image, top right: warped mesh, bottom left: direct deformation field, bottom right: inverse deformation field.

Tutorials

Panels and their use

  • Registration Parameters:
    • Block Radius: Radius (in image voxels) of the selected image blocks in each dimension (default: 1,1,1).
    • Window Radius: Radius (in image voxels) of the Block Matching window in each dimension (default: 5,5,5).
    • Selection Fraction: Fraction of the selected blocks from the total number of image blocks. Value should be between [0.01,1] (default: 0.05).
    • Rejection Fraction: Fraction of the rejected blocks from the number of the selected image blocks. Value should be between [0.01,1) (default: 0.25).
    • Outlier Rejection Steps: Number of outlier rejection steps. Value should be between [1,20] (default: 5).
    • Interpolation Steps: Number of interpolation steps. Value should be between [1,20] (default: 5).
    • Young Modulus: Young Modulus of the linear bio-mechanical model (default: 0.0021 N/mm2).
    • Poisson Ratio: Poisson Ratio of the linear bio-mechanical model. Value should be between [0.10,0.49] (default: 0.45).
  • Input/Output:
    • Moving Image: The input moving image.
    • Fixed Image: The input moving image.
    • Mask Image: The input moving image.
    • Mesh: The input moving image.
    • Output Volume: Moving image to the fixed image coordinate frame (optional).
    • Output Direct Deformation Field: Transform calculated that aligns the fixed and moving image. Maps positions in the moving coordinate frame to the fixed coordinate frame (optional).
    • Output Inverse Deformation Field: Transform calculated that aligns the fixed and moving image. Maps positions in the fixed coordinate frame to the moving coordinate frame (optional).
    • Output Warped Mesh: The warped tetrahedral mesh in vtk file format (optional).
PBNRR UI

Similar Modules


References

  • Xiaodong Tao, Ming-ching Chang, “A Skull Stripping Method Using Deformable Surface and Tissue Classification”, SPIE Medical Imaging, San Diego, CA, 2010.
  • Ming-ching Chang, Xiaodong Tao “Subvoxel Segmentation and Representation of Brain Cortex Using Fuzzy Clustering and Gradient Vector Diffusion”, SPIE Medical Imaging, San Diego, CA, 2010.


Information for Developers