Difference between revisions of "Documentation/Nightly/Modules/FastGrowCut"

From Slicer Wiki
Jump to: navigation, search
(Created page with '<noinclude>{{documentation/versioncheck}}</noinclude> <!-- ---------------------------- --> {{documentation/{{documentation/version}}/module-header}} <!-- -----------------------…')
 
Line 20: Line 20:
 
Author: Yi Gao, University of Alabama Birmingham<br>
 
Author: Yi Gao, University of Alabama Birmingham<br>
 
Author: Peter Karasev, Georgia Institute of Technology<br>
 
Author: Peter Karasev, Georgia Institute of Technology<br>
Author: Patricio Vela, Georgia Institute of Technology<br>
 
 
Author: Allen Tannenbaum, Stony Brook University<br>
 
Author: Allen Tannenbaum, Stony Brook University<br>
Contributor1: Steve Pieper, Isomics, Inc.<br>
 
Contributor2: Karl Fritscher (BWH & MGH)<br>
 
 
<!--Contributor2: FIRSTNAME LASTNAME, AFFILIATION<br> -->
 
<!--Contributor2: FIRSTNAME LASTNAME, AFFILIATION<br> -->
 
<!--Contact: FIRSTNAME LASTNAME, <email>john@doe.org</email><br> -->
 
<!--Contact: FIRSTNAME LASTNAME, <email>john@doe.org</email><br> -->

Revision as of 17:09, 18 April 2014

Home < Documentation < Nightly < Modules < FastGrowCut


For the latest Slicer documentation, visit the read-the-docs.





Introduction and Acknowledgements

This work is part of the National Alliance for Medical Image Computing (NA-MIC), funded by the National Institutes of Health through the NIH Roadmap for Medical Research, Grant U54 EB005149. Information on NA-MIC can be obtained from the NA-MIC website.

Author: Liangjia Zhu, Stony Brook University
Author: Ivan Kolesov, Stony Brook University
Author: Yi Gao, University of Alabama Birmingham
Author: Peter Karasev, Georgia Institute of Technology
Author: Allen Tannenbaum, Stony Brook University





Module Description

This is a fast implementation of the GrowCut method. It supports multi-label segmentation and user online interactions. Please see the references below for more details.








Tutorials

Step 1.) Add data volume to segment

LoadMeningioma.png


Step 2.) Go to the “Editor” module, select the volume loaded in Step 1 as the “Master Volume” in the “Create and Select Label Maps” drop-down menu

StartEditorMeningioma.png


Step 3.) Select the “CarreraSlice” effect in the “Edit Selected Label Map” drop-down menu

CarreraSliceEffect.png


Step 4.) Set the “Radius” parameter, the "Number of Iterations" and press the “Start Interactive Segmentor” button ( CarreraSlice is now running in the background until the “Stop Interactive Segmentor” button is pressed)

StartBotMeningioma.png


Step 5.) Turn “On” all three slice views in the 3D Plane

TurnOnSlices3DMeningioma.png

Step 6.) Initialize the segmentation using fast GrowCut

  • (a) go to PaintEffect to draw seed regions (label 1 for foreground and 2 for background), then press 'G' to run fast GrowCut.

FGCSeed.png FGCSeg1.png

  • (b) If not satified, press 'S' to toggle between seed image and segmentation result. Edit on the seed image to reduce over/under segmentaions.

FGCSeed2.png

  • (c) Once finished editing on the seed image, press 'G' to run fast GrowCut again.

FGCSeg2.png

The steps 6 (b) and (c) may be repeated a couple of times until satisfied.

Step 7.) Once satisfied with the initialization, press 'M' to start KSlice interactive segmentation. The energy functionals available are:

  • (a) press 'F' for local-global Chan-Vese segmentation
  • (b) press 'U' for mean curvature smoothing
  • (c) press 'E' for Chan-Vese segmentation