Difference between revisions of "Modules:BRAINSFit"

From Slicer Wiki
Jump to: navigation, search
Line 8: Line 8:
  
 
{|
 
{|
|[[Image:screenshotBlankNotOptional.png|thumb|280px|User Interface]]
+
|[[Image:BRAINSFitUI.png|thumb|280px|User Interface]]
 
|}
 
|}
  
Line 74: Line 74:
 
{|
 
{|
 
|
 
|
* '''Input panel:'''
 
** '''First input'''
 
** '''Second input'''
 
* '''Parameters panel:'''
 
** '''First parameter'''
 
** '''Second parameter'''
 
* '''Output panel:'''
 
** '''First output'''
 
** '''Second output'''
 
* '''Viewing panel:'''
 
|[[Image:screenshotBlankNotOptional.png|thumb|280px|User Interface]]
 
|}
 
  
== Development ==
+
  --returnparameterfile <std::string>
 +
    Filename in which to write simple return parameters (int, float,
 +
    int-vector, etc.) as opposed to bulk return parameters (image,
 +
    geometry, transform, measurement, table).
 +
 
 +
  --processinformationaddress <std::string>
 +
    Address of a structure to store process information (progress, abort,
 +
    etc.). (default: 0)
 +
 
 +
  --xml
 +
    Produce xml description of command line arguments (default: 0)
 +
 
 +
  --echo
 +
    Echo the command line arguments (default: 0)
 +
 
 +
  -p,  --promptUser
 +
    Prompt the user to hit enter each time an image is sent to the
 +
    DebugImageViewer (default: 0)
 +
 
 +
  -G,  --gui
 +
    Display intermediate image volumes for debugging.  NOTE:  This is not
 +
    part of the standard build sytem, and probably does nothing on your
 +
    installation. (default: 0)
 +
 
 +
  --projectedGradientTolerance <double>
 +
    From itkLBFGSBOptimizer.h: Set/Get the ProjectedGradientTolerance.
 +
    Algorithm terminates when the project gradient is below the tolerance.
 +
    Default lbfgsb value is 1e-5, but 1e-4 seems to work well. (default:
 +
    0.0001)
 +
 
 +
  --costFunctionConvergenceFactor <double>
 +
    From itkLBFGSBOptimizer.h: Set/Get the CostFunctionConvergenceFactor.
 +
    Algorithm terminates when the reduction in cost function is less than
 +
    (factor * epsmcj) where epsmch is the machine precision. Typical
 +
    values for factor: 1e+12 for low accuracy; 1e+7 for moderate accuracy
 +
    and 1e+1 for extremely high accuracy.  1e+9 seems to work well.
 +
    (default: 1e+09)
 +
 
 +
  --debugLevel <int>
 +
    Display debug messages, and produce debug intermediate results.  0=OFF
 +
    , 1=Minimal, 10=Maximum debugging. (default: 0)
 +
 
 +
  --debugNumberOfThreads <int>
 +
    Explicitly specify the maximum number of threads to use. (default: -1)
 +
 
 +
  --writeTransformOnFailure
 +
    Flag to save the final transform even if the numberOfIterations are
 +
    reached without convergence. (Intended for use when --failureExitCode
 +
    0 ) (default: 0)
 +
 
 +
  --failureExitCode <int>
 +
    If the fit fails, exit with this status code.  (It can be used to
 +
    force a successfult exit status of (0) if the registration fails due
 +
    to reaching the maximum number of iterations. (default: -1)
 +
 
 +
  --maximumStepSize <double>
 +
    Internal debugging parameter, and should probably never be used from
 +
    the command line.  This will be removed in the future. (default: 0.2)
 +
 
 +
  --relaxationFactor <double>
 +
    Internal debugging parameter, and should probably never be used from
 +
    the command line.  This will be removed in the future. (default: 0.5)
 +
 
 +
  --useExplicitPDFDerivativesMode <AUTO|ON|OFF>
 +
    Using mode AUTO means OFF for BSplineDeformableTransforms and ON for
 +
    the linear transforms.  The ON alternative uses more memory to
 +
    sometimes do a better job. (default: AUTO)
 +
 
 +
  --useCachingOfBSplineWeightsMode <ON|OFF>
 +
    This is a 5x speed advantage at the expense of requiring much more
 +
    memory.  Only relevant when transformType is BSpline. (default: ON)
 +
 
 +
  --movingVolumeOrigin <std::vector<int>>
 +
    The coordinates of the origin of the moving image.  This will
 +
    over-ride the information read from disk and is VERY DANGEROUS.
 +
    (default: 0,0,0)
 +
 
 +
  --fixedVolumeOrigin <std::vector<int>>
 +
    The coordinates of the origin of the fixed image.  This will over-ride
 +
    the information read from disk and is VERY DANGEROUS. (default: 0,0
 +
    ,0)
 +
 
 +
  --permitParameterVariation <std::vector<int>>
 +
    A bit vector to permit linear transform parameters to vary under
 +
    optimization.  The vector order corresponds with transform parameters,
 +
    and beyond the end ones fill in as a default.  For instance, you can
 +
    choose to rotate only in x (pitch) with 1,0,0;  this is mostly for
 +
    expert use in turning on and off individual degrees of freedom in
 +
    rotation, translation or scaling without multiplying the number of
 +
    transform representations; this trick is probably meaningless when
 +
    tried with the general affine transform.
 +
 
 +
  --studyID <std::string>
 +
    Identifier for the scanner encounter (MRQID), This will eventually be
 +
    removed. (default: ANON)
 +
 
 +
  --patientID <std::string>
 +
    Identifier for the research subject, This will eventually be removed.
 +
    (default: ANON)
 +
 
 +
  --numberOfMatchPoints <int>
 +
    the number of match points (default: 10)
 +
 
 +
  --numberOfHistogramBins <int>
 +
    the number of histogram levels (default: 50)
 +
 
 +
  -e,  --histogramMatch
 +
    Histogram Match the input images.  This is suitable for images of the
 +
    same modality that may have different absolute scales, but the same
 +
    overall intensity profile. (default: 0)
 +
 
 +
  --medianFilterSize <std::vector<int>>
 +
    The radius for the optional MedianImageFilter preprocessing in all 3
 +
    directions. (default: 0,0,0)
 +
 
 +
  --movingVolumeTimeIndex <int>
 +
    The index in the time series for the 3D moving image to fit, if
 +
    4-dimensional. (default: 0)
 +
 
 +
  --fixedVolumeTimeIndex <int>
 +
    The index in the time series for the 3D fixed image to fit, if
 +
    4-dimensional. (default: 0)
 +
 
 +
  --movingBinaryVolume <std::string>
 +
    Moving Image binary mask volume.
 +
 
 +
  --fixedBinaryVolume <std::string>
 +
    Fixed Image binary mask volume.
 +
 
 +
  --outputMovingVolumeROI <std::string>
 +
    The ROI automatically found in moving image.
 +
 
 +
  --outputFixedVolumeROI <std::string>
 +
    The ROI automatically found in fixed image.
 +
 
 +
  --maskProcessingMode <NOMASK|ROIAUTO|ROI>
 +
    What mode to use for using the masks.  If ROIAUTO is choosen, then the
 +
    mask is implicitly defined using a otsu forground and hole filling
 +
    algorithm. The Region Of Interest mode (choose ROI) uses the masks to
 +
    define what parts of the image should be used for computing the
 +
    transform. (default: NOMASK)
 +
 
 +
  --useWindowedSinc
 +
    Use windowedSinc interpolation to create output images.  WARNING: This
 +
    will add 8 minutes to the interpolation of the final image of size
 +
    256x256x256. (default: 0)
 +
 
 +
  --scaleOutputValues
 +
    If true, and the voxel values do not fit within the minimum and
 +
    maximum values of the desired outputVolumePixelType, then linearly
 +
    scale the min/max output image voxel values to fit within the min/max
 +
    range of the outputVolumePixelType. (default: 0)
 +
 
 +
  --backgroundFillValue <double>
 +
    Background fill value for output image. (default: 0)
 +
 
 +
  --outputVolumePixelType <float|short|ushort|int|uint|uchar>
 +
    The output image Pixel Type is the scalar datatype for representation
 +
    of the Output Volume. (default: float)
 +
 
 +
  --outputVolume <std::string>
 +
    The (optional) output image for registration.
 +
 
 +
  --strippedOutputTransform <std::string>
 +
    File name for the estimated transform, stripped of scaling, to
 +
    register the moving image to the fixed image.
 +
 
 +
  --outputTransform <std::string>
 +
    Filename to which save the estimated transform.
 +
 
 +
  --maxBSplineDisplacement <double>
 +
    Sets the maximum allowed displacements in image physical coordinates
 +
    for BSpline control grid along each axis.  A value of 0.0 indicates
 +
    that the problem should be unbounded.  NOTE:  This only constrains the
 +
    BSpline portion, and does not limit the displacement from the
 +
    associated bulk transform.  This can lead to a substantial reduction
 +
    in computation time in the BSpline optimizer. (default: 0)
 +
 
 +
  --splineGridSize <std::vector<int>>
 +
    The number of subdivisions of the BSpline Grid to be centered on the
 +
    image space.  Each dimension must have at least 3 subdivisions for the
 +
    BSpline to be correctly computed. (default: 14,10,12)
 +
 
 +
  --skewScale <double>
 +
    ScaleSkewVersor3D Skew compensation factor.  Increase this to put more
 +
    skew in a ScaleSkewVersor3D search pattern.  1.0 works well with a
 +
    translationScale of 1000.0 (default: 1)
 +
 
 +
  --reproportionScale <double>
 +
    ScaleVersor3D 'Scale' compensation factor.  Increase this to put more
 +
    rescaling in a ScaleVersor3D or ScaleSkewVersor3D search pattern.  1.0
 +
    works well with a translationScale of 1000.0 (default: 1)
 +
 
 +
  --translationScale <double>
 +
    How much to scale up changes in position compared to unit rotational
 +
    changes in radians -- decrease this to put more rotation in the search
 +
    pattern. (default: 1000)
 +
 
 +
  --minimumStepSize <std::vector<double>>
 +
    Each step in the optimization takes steps at least this big.  When
 +
    none are possible, registration is complete. (default: 0.005)
 +
 
 +
  --numberOfSamples <int>
 +
    The number of voxels sampled for mutual information computation.
 +
    Increase this for a slower, more careful fit.  You can also limit the
 +
    sampling focus with ROI masks and ROIAUTO mask generation. (default:
 +
    100000)
 +
 
 +
  --numberOfIterations <std::vector<int>>
 +
    The maximum number of iterations to try before failing to converge.
 +
    Use an explicit limit like 500 or 1000 to manage risk of divergence
 +
    (default: 1500)
 +
 
 +
  --initialTransform <std::string>
 +
    Filename of transform used to initialize the registration.
 +
 
 +
  --maskInferiorCutOffFromCenter <double>
 +
    For use with --initializeTransformMode CenterOfHead (and
 +
    --maskProcessingMode ROIAUTO): the cut-off below the image centers, in
 +
    millimeters, (default: 1000)
  
===Notes from the Developer(s)===
+
  --initializeTransformMode <Off|MomentsOn|CenterOfHead|GeometryOn>
 +
    Determine how to initialize the transform center.  GeometryOn on
 +
    assumes that the center of the voxel lattice of the images represent
 +
    similar structures.  MomentsOn assumes that the center of mass of the
 +
    images represent similar structures.  CenterOfHead attempts to use the
 +
    top of head and shape of neck to drive a center of mass estimate.  Off
 +
    assumes that the physical space of the images are close, and that
 +
    centering in terms of the image Origins is a good starting point.
 +
    This flag is mutually exclusive with the initialTransform flag.
 +
    (default: Off)
  
Algorithms used, library classes depended upon, use cases, etc.
+
  --transformType <std::vector<std::string>>
 +
    Specifies one of the four rigid ITK 3D transform types -- or BSpline
 +
    -- to use in parameter optimization descent.  BRAINSFit always
 +
    optimizes mutual information, but the kind of descent varies with the
 +
    transform type.  The valid types are, Rigid, ScaleVersor3D,
 +
    ScaleSkewVersor3D, Affine, and BSpline.  Specifiying more than one in
 +
    a comma separated list will initialize the next stage with the
 +
    previous results. (default: Rigid)
  
===Dependencies===
+
  --movingVolume <std::string>
 +
    The moving image for registration by mutual information optimization.
  
Other modules or packages that are required for this module's use.
+
  --fixedVolume <std::string>
 +
    The fixed image for registration by mutual information optimization.
  
===Tests===
+
|[[Image:BRAINSFitUIl.png|thumb|280px|User Interface]]
 +
|}
  
On the [http://www.cdash.org/CDash/index.php?project=Slicer3 Dashboard], these tests verify that the module is working on various platforms:
+
== Development ==
  
* MyModuleTest1 [http://viewvc.slicer.org/viewcvs.cgi/trunk MyModuleTest1.cxx]
+
===Notes from the Developer(s)===
* MyModuleTest2 [http://viewvc.slicer.org/viewcvs.cgi/trunk MyModuleTest2.cxx]
 
  
 +
===Dependencies===
 +
BRAINSFit depends on Slicer3 (for the SlicerExecutionModel support) and ITK.
 +
===Tests===
 +
TODO: Link to BRAINS3 and/or Slicer3 dashboard tests.
 
===Known bugs===
 
===Known bugs===
  

Revision as of 19:29, 6 May 2010

Home < Modules:BRAINSFit

Return to Slicer 3.6 Documentation

Gallery of New Features


Module Name

BRAINSFit

User Interface

General Information

Module Type & Category

Type: CLI

Category: Registration

Authors, Collaborators & Contact

  • Author1: Hans Johnson, University of Iowa
  • Contributor1: Kent WIlliams, University of Iowa
  • Contact: Hans Johnson, hans-johson at uiowa.edu

Module Description

BRAINSFit is a program for mutual information registration of brain imaging data using ITK classes. It is based on an example program included in the ITK distribution,

Insight/Examples/Registration/ImageRegistration8.cxx This program is the most functional example of multi-modal 3D rigid image registration provided with ITK. ImageRegistration8 is in the Examples directory, and also sec. 8.5.3 in the ITK manual. We have modified and extended this example in several ways:

  • defined a new ITK Transform class, based on itkScaleSkewVersor3DTransform which has 3 dimensions of scale but no skew aspect.
  • implemented a set of functions to convert between Versor Transforms and the general itk::AffineTransform and deferred converting from specific to more general representations to preserve transform information specificity as long as possible. Our Rigid transform is the narrowest, a Versor rotation plus separate translation.
  • Added a template class itkMultiModal3DMutualRegistrationHelper which is templated over the type of ITK transform generated, and the optimizer used.
  • Added image masks as an optional input to the Registration algorithm, limiting the volume considered during registration to voxels within the brain.
  • Added image mask generation as an optional input to the Registration algorithm when meaningful masks such as for whole brain are not available, allowing the fit to at least be focused on whole head tissue.
  • Added the ability to use one transform result, such as the Rigid transform, to initialize a more adaptive transform
  • Defined the command line parameters using tools from the Slicer [ 3] program, in order to conform to the Slicer3 Execution model.

Added the ability to write output images in any ITK-supported scalar image format.

  • Through extensive testing as part of the BRAINS2 application suite, determined reasonable defaults for registration algorithm parameters.

Usage

The BRAINSFit distribution contains a directory named TestData, which contains two example images. The first, test.nii.gz is a NIfTI format image volume, which is used the input for the CTest-managed regression test program. The program makexfrmedImage.cxx, included in the BRAINSFit distribution was used to generate test2.nii.gz, by scaling, rotating and translating test.nii.gz. You can see representative Sagittal slices of test.nii.gz (in this case, the fixed image, test2.nii.gz (the moving image), and the two images ’checkerboarded’ together to the right. To register test2.nii.gz to test.nii.gz, you can use the following command:

BRAINSFit --fixedVolume test.nii.gz \
--movingVolume test2.nii.gz \
--outputVolume registered.nii.gz \
--transformType Affine

A representative slice of the registered results image registered.nii.gz is to the right. You can see from the Checkerboard of the Fixed and Registered images that the fit is quite good with Affine transform-based registration. The blurring of the registered images is a consequence of the initial scaling used in generating the moving image from the fixed image, compounded by the interpolation necessitated by the transform operation.

You can see the differences in results if you re-run BRAINSFit using Rigid, ScaleVersor3D, or ScaleSkewVersor3D as the ----transformType parameter. In this case, the authors judged Affine the best method for registering these particular two images; in the BRAINS2 automated processing pipeline, Rigid usually works well for registering research scans.

Use Cases, Examples

This module is especially appropriate for these use cases:

  • Use Case 1:
  • Use Case 2:

Examples of the module in use:

  • Example 1
  • Example 2

Tutorials

Links to tutorials explaining how to use this module:

  • Tutorial 1
    • Data Set 1

Quick Tour of Features and Use

A list panels in the interface, their features, what they mean, and how to use them. For instance:

  --returnparameterfile <std::string>
    Filename in which to write simple return parameters (int, float,
    int-vector, etc.) as opposed to bulk return parameters (image,
    geometry, transform, measurement, table).
  --processinformationaddress <std::string>
    Address of a structure to store process information (progress, abort,
    etc.). (default: 0)
  --xml
    Produce xml description of command line arguments (default: 0)
  --echo
    Echo the command line arguments (default: 0)
  -p,  --promptUser
    Prompt the user to hit enter each time an image is sent to the
    DebugImageViewer (default: 0)
  -G,  --gui
    Display intermediate image volumes for debugging.  NOTE:  This is not
    part of the standard build sytem, and probably does nothing on your
    installation. (default: 0)
  --projectedGradientTolerance <double>
    From itkLBFGSBOptimizer.h: Set/Get the ProjectedGradientTolerance.
    Algorithm terminates when the project gradient is below the tolerance.
    Default lbfgsb value is 1e-5, but 1e-4 seems to work well. (default:
    0.0001)
  --costFunctionConvergenceFactor <double>
    From itkLBFGSBOptimizer.h: Set/Get the CostFunctionConvergenceFactor.
    Algorithm terminates when the reduction in cost function is less than
    (factor * epsmcj) where epsmch is the machine precision. Typical
    values for factor: 1e+12 for low accuracy; 1e+7 for moderate accuracy
    and 1e+1 for extremely high accuracy.  1e+9 seems to work well.
    (default: 1e+09)
  --debugLevel <int>
    Display debug messages, and produce debug intermediate results.  0=OFF
    , 1=Minimal, 10=Maximum debugging. (default: 0)
  --debugNumberOfThreads <int>
    Explicitly specify the maximum number of threads to use. (default: -1)
  --writeTransformOnFailure
    Flag to save the final transform even if the numberOfIterations are
    reached without convergence. (Intended for use when --failureExitCode
    0 ) (default: 0)
  --failureExitCode <int>
    If the fit fails, exit with this status code.  (It can be used to
    force a successfult exit status of (0) if the registration fails due
    to reaching the maximum number of iterations. (default: -1)
  --maximumStepSize <double>
    Internal debugging parameter, and should probably never be used from
    the command line.  This will be removed in the future. (default: 0.2)
  --relaxationFactor <double>
    Internal debugging parameter, and should probably never be used from
    the command line.  This will be removed in the future. (default: 0.5)
  --useExplicitPDFDerivativesMode <AUTO|ON|OFF>
    Using mode AUTO means OFF for BSplineDeformableTransforms and ON for
    the linear transforms.  The ON alternative uses more memory to
    sometimes do a better job. (default: AUTO)
  --useCachingOfBSplineWeightsMode <ON|OFF>
    This is a 5x speed advantage at the expense of requiring much more
    memory.  Only relevant when transformType is BSpline. (default: ON)
  --movingVolumeOrigin <std::vector<int>>
    The coordinates of the origin of the moving image.  This will
    over-ride the information read from disk and is VERY DANGEROUS.
    (default: 0,0,0)
  --fixedVolumeOrigin <std::vector<int>>
    The coordinates of the origin of the fixed image.  This will over-ride
    the information read from disk and is VERY DANGEROUS. (default: 0,0
    ,0)
  --permitParameterVariation <std::vector<int>>
    A bit vector to permit linear transform parameters to vary under
    optimization.  The vector order corresponds with transform parameters,
    and beyond the end ones fill in as a default.  For instance, you can
    choose to rotate only in x (pitch) with 1,0,0;  this is mostly for
    expert use in turning on and off individual degrees of freedom in
    rotation, translation or scaling without multiplying the number of
    transform representations; this trick is probably meaningless when
    tried with the general affine transform.
  --studyID <std::string>
    Identifier for the scanner encounter (MRQID), This will eventually be
    removed. (default: ANON)
  --patientID <std::string>
    Identifier for the research subject, This will eventually be removed.
    (default: ANON)
  --numberOfMatchPoints <int>
    the number of match points (default: 10)
  --numberOfHistogramBins <int>
    the number of histogram levels (default: 50)
  -e,  --histogramMatch
    Histogram Match the input images.  This is suitable for images of the
    same modality that may have different absolute scales, but the same
    overall intensity profile. (default: 0)
  --medianFilterSize <std::vector<int>>
    The radius for the optional MedianImageFilter preprocessing in all 3
    directions. (default: 0,0,0)
  --movingVolumeTimeIndex <int>
    The index in the time series for the 3D moving image to fit, if
    4-dimensional. (default: 0)
  --fixedVolumeTimeIndex <int>
    The index in the time series for the 3D fixed image to fit, if
    4-dimensional. (default: 0)
  --movingBinaryVolume <std::string>
    Moving Image binary mask volume.
  --fixedBinaryVolume <std::string>
    Fixed Image binary mask volume.
  --outputMovingVolumeROI <std::string>
    The ROI automatically found in moving image.
  --outputFixedVolumeROI <std::string>
    The ROI automatically found in fixed image.
  --maskProcessingMode <NOMASK|ROIAUTO|ROI>
    What mode to use for using the masks.  If ROIAUTO is choosen, then the
    mask is implicitly defined using a otsu forground and hole filling
    algorithm. The Region Of Interest mode (choose ROI) uses the masks to
    define what parts of the image should be used for computing the
    transform. (default: NOMASK)
  --useWindowedSinc
    Use windowedSinc interpolation to create output images.  WARNING: This
    will add 8 minutes to the interpolation of the final image of size
    256x256x256. (default: 0)
  --scaleOutputValues
    If true, and the voxel values do not fit within the minimum and
    maximum values of the desired outputVolumePixelType, then linearly
    scale the min/max output image voxel values to fit within the min/max
    range of the outputVolumePixelType. (default: 0)
  --backgroundFillValue <double>
    Background fill value for output image. (default: 0)
  --outputVolumePixelType <float|short|ushort|int|uint|uchar>
    The output image Pixel Type is the scalar datatype for representation
    of the Output Volume. (default: float)
  --outputVolume <std::string>
    The (optional) output image for registration.
  --strippedOutputTransform <std::string>
    File name for the estimated transform, stripped of scaling, to
    register the moving image to the fixed image.
  --outputTransform <std::string>
    Filename to which save the estimated transform.
  --maxBSplineDisplacement <double>
    Sets the maximum allowed displacements in image physical coordinates
    for BSpline control grid along each axis.  A value of 0.0 indicates
    that the problem should be unbounded.  NOTE:  This only constrains the
    BSpline portion, and does not limit the displacement from the
    associated bulk transform.  This can lead to a substantial reduction
    in computation time in the BSpline optimizer. (default: 0)
  --splineGridSize <std::vector<int>>
    The number of subdivisions of the BSpline Grid to be centered on the
    image space.  Each dimension must have at least 3 subdivisions for the
    BSpline to be correctly computed. (default: 14,10,12)
  --skewScale <double>
    ScaleSkewVersor3D Skew compensation factor.  Increase this to put more
    skew in a ScaleSkewVersor3D search pattern.  1.0 works well with a
    translationScale of 1000.0 (default: 1)
  --reproportionScale <double>
    ScaleVersor3D 'Scale' compensation factor.  Increase this to put more
    rescaling in a ScaleVersor3D or ScaleSkewVersor3D search pattern.  1.0
    works well with a translationScale of 1000.0 (default: 1)
  --translationScale <double>
    How much to scale up changes in position compared to unit rotational
    changes in radians -- decrease this to put more rotation in the search
    pattern. (default: 1000)
  --minimumStepSize <std::vector<double>>
    Each step in the optimization takes steps at least this big.  When
    none are possible, registration is complete. (default: 0.005)
  --numberOfSamples <int>
    The number of voxels sampled for mutual information computation. 
    Increase this for a slower, more careful fit.  You can also limit the
    sampling focus with ROI masks and ROIAUTO mask generation. (default:
    100000)
  --numberOfIterations <std::vector<int>>
    The maximum number of iterations to try before failing to converge. 
    Use an explicit limit like 500 or 1000 to manage risk of divergence
    (default: 1500)
  --initialTransform <std::string>
    Filename of transform used to initialize the registration.
  --maskInferiorCutOffFromCenter <double>
    For use with --initializeTransformMode CenterOfHead (and
    --maskProcessingMode ROIAUTO): the cut-off below the image centers, in
    millimeters, (default: 1000)
  --initializeTransformMode <Off|MomentsOn|CenterOfHead|GeometryOn>
    Determine how to initialize the transform center.  GeometryOn on
    assumes that the center of the voxel lattice of the images represent
    similar structures.  MomentsOn assumes that the center of mass of the
    images represent similar structures.  CenterOfHead attempts to use the
    top of head and shape of neck to drive a center of mass estimate.  Off
    assumes that the physical space of the images are close, and that
    centering in terms of the image Origins is a good starting point. 
    This flag is mutually exclusive with the initialTransform flag.
    (default: Off)
  --transformType <std::vector<std::string>>
    Specifies one of the four rigid ITK 3D transform types -- or BSpline
    -- to use in parameter optimization descent.  BRAINSFit always
    optimizes mutual information, but the kind of descent varies with the
    transform type.  The valid types are, Rigid, ScaleVersor3D,
    ScaleSkewVersor3D, Affine, and BSpline.  Specifiying more than one in
    a comma separated list will initialize the next stage with the
    previous results. (default: Rigid)
  --movingVolume <std::string>
    The moving image for registration by mutual information optimization.
  --fixedVolume <std::string>
    The fixed image for registration by mutual information optimization.
File:BRAINSFitUIl.png
User Interface

Development

Notes from the Developer(s)

Dependencies

BRAINSFit depends on Slicer3 (for the SlicerExecutionModel support) and ITK.

Tests

TODO: Link to BRAINS3 and/or Slicer3 dashboard tests.

Known bugs

Links to known bugs in the Slicer3 bug tracker


Usability issues

Follow this link to the Slicer3 bug tracker. Please select the usability issue category when browsing or contributing.

Source code & documentation

Links to the module's source code:

Source code:

Doxygen documentation:

More Information

Acknowledgment

Include funding and other support here.

References

Publications related to this module go here. Links to pdfs would be useful.