Difference between revisions of "Documentation/Nightly/Extensions/DensityLungSegmentation"

From Slicer Wiki
Jump to: navigation, search
(Created page with "<noinclude>{{documentation/versioncheck}} </noinclude> <!-- ---------------------------- --> {{documentation/{{documentation/version}}/module-header}} <!-- -------------------...")
Tag: 2017 source edit
 
Tag: 2017 source edit
Line 30: Line 30:
  
 
{|
 
{|
|[[Image:SlicerSyntheticCTEvaluation_screenshot.png|thumb|340px|Synthetic CT Evaluation module]]
+
|[[File:LungDensitySegmentation_screenshot.png|thumb|340px|Lung Density Segmentation module]]
 
|}
 
|}
  
Line 61: Line 61:
 
<!-- ---------------------------- -->
 
<!-- ---------------------------- -->
 
{{documentation/{{documentation/version}}/module-section|Information for Developers}}
 
{{documentation/{{documentation/version}}/module-section|Information for Developers}}
https://github.com/pzaffino/SlicerImageCompare
+
https://github.com/pzaffino/SlicerLungDensitySegmentation
 
{{documentation/{{documentation/version}}/module-developerinfo}}
 
{{documentation/{{documentation/version}}/module-developerinfo}}
  

Revision as of 13:32, 31 August 2021

Home < Documentation < Nightly < Extensions < DensityLungSegmentation


For the latest Slicer documentation, visit the read-the-docs.


Introduction and Acknowledgements

Extension: ImageCompare
Author: Paolo Zaffino, Magna Graecia Univeristy of Catanzaro - Italy
Contributor1: Maria Francesca Spadea, Magna Graecia Univeristy of Catanzaro - Italy
Contact: Paolo Zaffino, <email>p.zaffino@unicz.it</email>

This extension is for labeling lung tissue CT according to intensity.

Module Description

  • Lung Density Segmentation: This module, given a chest CT, labels lung tissue according to intensity. It can be used for pneumonia (COVID-19 too).


Use Cases

  • Lung Density Segmentation

User wants to segmente lung tissue according to intensity (healthy, ground-glass opacities, and consolidation).

Lung Density Segmentation module

Tutorials

  • Lung Density Segmentation
1. Load chest CT
2. Select/create a labelmap for the result
3. Select/create a labelmap for the averaged result
4. Click Apply button

Panels and their use

Synthetic CT Evaluation module UI

Similar Modules

References

  • Zaffino, Paolo, et al. "An Open-Source COVID-19 CT Dataset with Automatic Lung Tissue Classification for Radiomics." Bioengineering 8.2 (2021): 26.


Information for Developers

https://github.com/pzaffino/SlicerLungDensitySegmentation