Difference between revisions of "Documentation/Nightly/Extensions/ImageCompare"

From Slicer Wiki
Jump to: navigation, search
(Template import)
Tag: 2017 source edit
 
Tag: 2017 source edit
 
(17 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<noinclude>{{documentation/versioncheck}}</noinclude>
+
<noinclude>{{documentation/versioncheck}}
 +
</noinclude>
 
<!-- ---------------------------- -->
 
<!-- ---------------------------- -->
 
{{documentation/{{documentation/version}}/module-header}}
 
{{documentation/{{documentation/version}}/module-header}}
Line 8: Line 9:
 
{{documentation/{{documentation/version}}/module-introduction-start|{{documentation/modulename}}}}
 
{{documentation/{{documentation/version}}/module-introduction-start|{{documentation/modulename}}}}
 
{{documentation/{{documentation/version}}/module-introduction-row}}
 
{{documentation/{{documentation/version}}/module-introduction-row}}
Extension: [[Documentation/{{documentation/version}}/Extensions/SkullStripper|SkullStripper]]<br>
+
Extension: [[Documentation/{{documentation/version}}/Extensions/ImageCompare|ImageCompare]]<br>
Acknowledgments:
+
Author: Paolo Zaffino, Magna Graecia Univeristy of Catanzaro - Italy<br>
This work is part of the National Alliance for Medical Image Computing (NAMIC), funded by the National Institutes of Health through the NIH Roadmap for Medical Research, Grant U54 EB005149.<br>
+
Contributor1: Maria Francesca Spadea, Magna Graecia Univeristy of Catanzaro - Italy<br>
Implementation of the Fuzzy Classification was contributed by Dr. Ming-Ching Chang from GE Research.<br>
+
Contact: Paolo Zaffino, <email>p.zaffino@unicz.it</email><br>
[http://www.oasis-brains.org/ OASIS datasets] were used to generate images on this page.<br>
 
Author: Xiaodong Tao ({{collaborator|name|ge}})<br>
 
Contributor1: Jean-Christophe Fillion-Robin ({{collaborator|name|kitware}})<br>
 
Contact: Xiaodong Tao, <email>taox@research.ge.com</email><br>
 
{{documentation/{{documentation/version}}/module-introduction-row}}
 
{{documentation/{{documentation/version}}/module-introduction-logo-gallery
 
|{{collaborator|logo|ge}}|{{collaborator|longname|ge}}
 
|{{collaborator|logo|kitware}}|{{collaborator|longname|kitware}}
 
|{{collaborator|logo|namic}}|{{collaborator|longname|namic}}
 
}}
 
  
 
{{documentation/{{documentation/version}}/module-introduction-end}}
 
{{documentation/{{documentation/version}}/module-introduction-end}}
 +
 +
This extension is for comparing images.
 +
For the moment it contains just a single module for syntethic CT evaluation.
  
 
<!-- ---------------------------- -->
 
<!-- ---------------------------- -->
 
{{documentation/{{documentation/version}}/module-section|Module Description}}
 
{{documentation/{{documentation/version}}/module-section|Module Description}}
 +
 +
* SyntheticCTEvaluation: This module allows to quantify the similarity between a syntethic CT and a ground truth.
  
  
 +
<!-- ---------------------------- -->{{documentation/{{documentation/version}}/module-section|Use Cases}}
 +
 +
* Synthetic CT Evaluation
 +
User wants to quantify conversion accuracy of his algorithm for synthetic CT generation
  
<!-- ---------------------------- -->
 
{{documentation/{{documentation/version}}/module-section|Use Cases}}
 
 
{|
 
{|
|[[Image:SkullStripperInput-3-6.png|thumb|340px|Input T1 Image]]
+
|[[Image:SlicerSyntheticCTEvaluation_screenshot.png|thumb|340px|Synthetic CT Evaluation module]]
|[[Image:SkullStripperOutput-3-6.png|thumb|340px|Brain mask as contour]]
 
|[[Image:SkullStripperSurface-3-6.png|thumb|375px|Brain surface]]
 
 
|}
 
|}
  
 
<!-- ---------------------------- -->
 
<!-- ---------------------------- -->
 
{{documentation/{{documentation/version}}/module-section|Tutorials}}
 
{{documentation/{{documentation/version}}/module-section|Tutorials}}
 +
 +
* Synthetic CT Evaluation
 +
1. Load ground truth CT
 +
2. Load synthetic CT
 +
3. Load/generate a mask of patient's outilne
 +
4. Click Apply button
  
 
<!-- ---------------------------- -->
 
<!-- ---------------------------- -->
Line 46: Line 48:
 
{|
 
{|
 
|
 
|
|[[Image:SkullStripper-3-6.png|thumb|280px|Module UI]]
+
|[[Image:SlicerSyntheticCTEvaluation_panel.png|thumb|280px|Synthetic CT Evaluation module UI]]
 
|}
 
|}
  
Line 54: Line 56:
 
<!-- ---------------------------- -->
 
<!-- ---------------------------- -->
 
{{documentation/{{documentation/version}}/module-section|References}}
 
{{documentation/{{documentation/version}}/module-section|References}}
* Xiaodong Tao, Ming-ching Chang, “A Skull Stripping Method Using Deformable Surface and Tissue Classification”, SPIE Medical Imaging, San Diego, CA, 2010.
+
 
* Ming-ching Chang, Xiaodong Tao “Subvoxel Segmentation and Representation of Brain Cortex Using Fuzzy Clustering and Gradient Vector Diffusion”, SPIE Medical Imaging, San Diego, CA, 2010.
+
*Spadea MF, Pileggi G, Zaffino P, Salome P, Catana C, Izquierdo-Garcia D, Amato F, Seco J. Deep Convolution Neural Network (DCNN) Multiplane Approach to Synthetic CT Generation From MR images—Application in Brain Proton Therapy. International Journal of Radiation Oncology* Biology* Physics. 2019 Nov 1;105(3):495-503.
  
  
 
<!-- ---------------------------- -->
 
<!-- ---------------------------- -->
 
{{documentation/{{documentation/version}}/module-section|Information for Developers}}
 
{{documentation/{{documentation/version}}/module-section|Information for Developers}}
 +
https://github.com/pzaffino/SlicerImageCompare
 
{{documentation/{{documentation/version}}/module-developerinfo}}
 
{{documentation/{{documentation/version}}/module-developerinfo}}
  

Latest revision as of 10:59, 24 January 2020

Home < Documentation < Nightly < Extensions < ImageCompare


For the latest Slicer documentation, visit the read-the-docs.


Introduction and Acknowledgements

Extension: ImageCompare
Author: Paolo Zaffino, Magna Graecia Univeristy of Catanzaro - Italy
Contributor1: Maria Francesca Spadea, Magna Graecia Univeristy of Catanzaro - Italy
Contact: Paolo Zaffino, <email>p.zaffino@unicz.it</email>

This extension is for comparing images. For the moment it contains just a single module for syntethic CT evaluation.

Module Description

  • SyntheticCTEvaluation: This module allows to quantify the similarity between a syntethic CT and a ground truth.


Use Cases

  • Synthetic CT Evaluation

User wants to quantify conversion accuracy of his algorithm for synthetic CT generation

Synthetic CT Evaluation module

Tutorials

  • Synthetic CT Evaluation
1. Load ground truth CT
2. Load synthetic CT
3. Load/generate a mask of patient's outilne
4. Click Apply button

Panels and their use

Synthetic CT Evaluation module UI

Similar Modules

References

  • Spadea MF, Pileggi G, Zaffino P, Salome P, Catana C, Izquierdo-Garcia D, Amato F, Seco J. Deep Convolution Neural Network (DCNN) Multiplane Approach to Synthetic CT Generation From MR images—Application in Brain Proton Therapy. International Journal of Radiation Oncology* Biology* Physics. 2019 Nov 1;105(3):495-503.


Information for Developers

https://github.com/pzaffino/SlicerImageCompare