Difference between revisions of "Documentation/Nightly/Extensions/AnomalousFilters"

From Slicer Wiki
Jump to: navigation, search
m
Tag: 2017 source edit
 
(12 intermediate revisions by the same user not shown)
Line 22: Line 22:
  
 
<!-- ---------------------------- -->
 
<!-- ---------------------------- -->
{{documentation/{{documentation/version}}/module-section|Module Description}}
+
{{documentation/{{documentation/version}}/module-section|Extension Description}}
 
{{documentation/{{documentation/version}}/module-description}}
 
{{documentation/{{documentation/version}}/module-description}}
 
{|
 
{|
 
[[Image:AnomalousDiffusionExtension-logo.png|left]]
 
[[Image:AnomalousDiffusionExtension-logo.png|left]]
  
Anomalous diffusion processes (ADP) are mathematically denoted by a power law in the Fokker-Planck equation, leading to the generalized form. There are several generalizations of the Fokker-Plank equation, which should give many different partial differential equations (PDEs). Here we adopt only the so-called porous media form, allowing the super-diffusive and the subdiffusive processes. <ref>Tsallis, C. (2009). Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World. Springer.</ref> In porous media, channels are created promoting or blocking the flow of the density function, which has been proved to provide a suitable application on MRI filtering.<ref>Da S Senra Filho, A. C., Garrido Salmon, C. E., & Murta Junior, L. O. (2015). Anomalous diffusion process applied to magnetic resonance image enhancement. Physics in Medicine and Biology, 60(6), 2355–2373. doi:10.1088/0031-9155/60/6/2355</ref>
+
Anomalous diffusion processes (ADP) are mathematically denoted by a power law in the Fokker-Planck equation, leading to the generalized form. There are several generalizations of the Fokker-Plank equation, which should give many different partial differential equations (PDEs). Here we adopted the so-called porous media equation, allowing the super-diffusive and the sub-diffusive processes <ref>Tsallis, C. (2009). Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World. Springer.</ref>. In porous media, channels are created promoting or blocking the flow of the density function, which has been proved to provide a suitable application for MRI noise attenuation <ref>Da S Senra Filho, A. C., Garrido Salmon, C. E., & Murta Junior, L. O. (2015). Anomalous diffusion process applied to magnetic resonance image enhancement. Physics in Medicine and Biology, 60(6), 2355–2373. doi:10.1088/0031-9155/60/6/2355</ref>.
  
Basically, there are two different filters already implementing the anomalous diffusion process: the isotropic anomalous diffusion and anisotropic anomalous diffusion filters.<ref>Da S Senra Filho, A. C., Garrido Salmon, C. E., & Murta Junior, L. O. (2015). Anomalous diffusion process applied to magnetic resonance image enhancement. Physics in Medicine and Biology, 60(6), 2355–2373. doi:10.1088/0031-9155/60/6/2355</ref> Each of these filters were already applied on different imaging MR modalities, such as structural T1 and T2 images<ref>Da S Senra Filho, A. C., Garrido Salmon, C. E., & Murta Junior, L. O. (2015). Anomalous diffusion process applied to magnetic resonance image enhancement. Physics in Medicine and Biology, 60(6), 2355–2373. doi:10.1088/0031-9155/60/6/2355</ref>, diffusion weighted images (DWI and DTI)<ref>Senra Filho, A. C. da S., Duque, J. J., & Murta, L. O. (2013). Isotropic anomalous filtering in Diffusion-Weighted Magnetic Resonance Imaging. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2013, 4022–5. doi:10.1109/EMBC.2013.6610427</ref><ref>Senra Filho, A. C. da S., Simozo, F. H., Salmon, C. E. G., & Murta Junior, L. O. (2014). Anisotropic anomalous filter as a tool for decreasing patient exam time in diffusion-weighted MRI protocols. In XXIV Brazilian Congress on Biomedical Engineering (pp. 0–3). Uberlandia.</ref>, MRI relaxation T1 and T2 relaxometry<ref>Filho, A. C. da S. S., Barbosa, J. H. O., Salmon, C. E. G. S., & Junior, L. O. M. (2014). Anisotropic Anomalous Diffusion Filtering Applied to Relaxation Time Estimation in Magnetic Resonance Imaging. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 3893–3896). IEEE. doi:10.1109/EMBC.2014.6944474</ref> and in fMRI<ref>Filho, A. C. da S. S., Rondinoni, C., Santos, A. C. dos, & Junior, L. O. M. (2014). Brain Activation Inhomogeneity Highlighted by the Isotropic Anomalous Diffusion Filter. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 3313–3316). Chicago: IEEE. doi:10.1109/EMBC.2014.6944331</ref> as an initial study.  
+
Basically, there are two different filters already implementing the anomalous diffusion process: the isotropic anomalous diffusion and anisotropic anomalous diffusion filters <ref>Da S Senra Filho, A. C., Garrido Salmon, C. E., & Murta Junior, L. O. (2015). Anomalous diffusion process applied to magnetic resonance image enhancement. Physics in Medicine and Biology, 60(6), 2355–2373. doi:10.1088/0031-9155/60/6/2355</ref>. These filters were already applied on different imaging MR modalities, such as structural T1 and T2 images <ref>Da S Senra Filho, A. C., Garrido Salmon, C. E., & Murta Junior, L. O. (2015). Anomalous diffusion process applied to magnetic resonance image enhancement. Physics in Medicine and Biology, 60(6), 2355–2373. doi:10.1088/0031-9155/60/6/2355</ref>, diffusion-weighted images (DWI and DTI)<ref>Senra Filho, A. C. da S., Duque, J. J., & Murta, L. O. (2013). Isotropic anomalous filtering in Diffusion-Weighted Magnetic Resonance Imaging. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2013, 4022–5. doi:10.1109/EMBC.2013.6610427</ref><ref>Senra Filho, A. C. da S., Simozo, F. H., Salmon, C. E. G., & Murta Junior, L. O. (2014). Anisotropic anomalous filter as a tool for decreasing patient exam time in diffusion-weighted MRI protocols. In XXIV Brazilian Congress on Biomedical Engineering (pp. 0–3). Uberlandia.</ref>, MRI relaxation T1 and T2 relaxometry<ref>Filho, A. C. da S. S., Barbosa, J. H. O., Salmon, C. E. G. S., & Junior, L. O. M. (2014). Anisotropic Anomalous Diffusion Filtering Applied to Relaxation Time Estimation in Magnetic Resonance Imaging. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 3893–3896). IEEE. doi:10.1109/EMBC.2014.6944474</ref> and to fMRI<ref>Filho, A. C. da S. S., Rondinoni, C., Santos, A. C. dos, & Junior, L. O. M. (2014). Brain Activation Inhomogeneity Highlighted by the Isotropic Anomalous Diffusion Filter. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 3313–3316). Chicago: IEEE. doi:10.1109/EMBC.2014.6944331</ref> as an initial study.  
  
 
<!-- ---------------------------- -->
 
<!-- ---------------------------- -->
 
{{documentation/{{documentation/version}}/extension-section|Modules}}
 
{{documentation/{{documentation/version}}/extension-section|Modules}}
*[[Documentation/{{documentation/version}}/Modules/AADImageFilter|AAD Image Filter]]
+
* '''Structural image denoising with tissues border preservation function''': [[Documentation/{{documentation/version}}/Modules/AADImageFilter|AAD Image Filter]]
*[[Documentation/{{documentation/version}}/Modules/IADImageFilter|IAD Image Filter]]
+
* '''Structural image denoising without tissues border preservation function''': [[Documentation/{{documentation/version}}/Modules/IADImageFilter|IAD Image Filter]]
*[[Documentation/{{documentation/version}}/Modules/AADDiffusionWeightedData|AAD on DWI Image]]
+
* '''Diffusion-weighted MR image denoising with tissues border preservation''': [[Documentation/{{documentation/version}}/Modules/AADDiffusionWeightedData|AAD on DWI Image]]
 +
* '''Echo-planar imaging denoising with tissues border preservation (fMRI and ASL)''': [[Documentation/{{documentation/version}}/Modules/AADEPIData|AAD on EPI Image]]
  
 
<!-- ---------------------------- -->
 
<!-- ---------------------------- -->
 
{{documentation/{{documentation/version}}/module-section|Use Cases}}
 
{{documentation/{{documentation/version}}/module-section|Use Cases}}
 
Most frequently used for these scenarios:
 
Most frequently used for these scenarios:
* Use Case 1: Noise reduction as a preprocessing step for tissue segmentation
+
* Use Case 1: Noise reduction as a pre-processing step for tissue segmentation
**When dealing with single voxel classification schemes running noise reduction as a preprocessing scheme will reduce the number of single misclassified voxels.
+
**When dealing with single voxel classification schemes, a noise reduction pre-processing step is usually helpful to reduce data fluctuation due to acquisition artifacts (e.g. reducing the number of misclassified voxels).
* Use Case 2: Preprocessing to volume rendering
+
* Use Case 2: Volume rendering
 
**Noise reduction will result in nicer looking volume renderings
 
**Noise reduction will result in nicer looking volume renderings
 
* Use Case 3: Noise reduction as part of image processing pipeline
 
* Use Case 3: Noise reduction as part of image processing pipeline
 
**Could offer a better segmentation and classification on specific brain image analysis such as in Multiple Sclerosis lesion segmentation
 
**Could offer a better segmentation and classification on specific brain image analysis such as in Multiple Sclerosis lesion segmentation
<gallery>
+
<gallery widths="400px" heights="400px" perrow="3">
 
Image:MRI_raw.png|Raw T1 weighted MRI Image
 
Image:MRI_raw.png|Raw T1 weighted MRI Image
 
Image:MRI_AAD.png|T1 weighted MRI Image with AAD filter (q=1.2)
 
Image:MRI_AAD.png|T1 weighted MRI Image with AAD filter (q=1.2)
Line 52: Line 53:
 
Image:DTI_FA_raw.png|DTI-FA map without image filtering process
 
Image:DTI_FA_raw.png|DTI-FA map without image filtering process
 
Image:DTI_FA_AAD.png|DTI-FA map with AAD image filtering (q=0.4)
 
Image:DTI_FA_AAD.png|DTI-FA map with AAD image filtering (q=0.4)
</gallery>
 
 
<!-- ---------------------------- -->
 
{{documentation/{{documentation/version}}/extension-section|Tutorials}}
 
 
<gallery widths="200px" perrow="4">
 
Image:AnomalousFilters_tutorial_ppt.png|[http://forge.abcd.harvard.edu/gf/download/frsrelease/110/1023/3D_Slicer_Plastimatch_Registration_Tutorial.ppt Download tutorial]
 
Image:AnomalousFilters_tutorial_data.png|[http://forge.abcd.harvard.edu/gf/download/frsrelease/85/1004/rider-lung-images.tar.gz Download tutorial data]
 
 
</gallery>
 
</gallery>
  
 
<!-- ---------------------------- -->
 
<!-- ---------------------------- -->
 
{{documentation/{{documentation/version}}/extension-section|Similar Extensions}}
 
{{documentation/{{documentation/version}}/extension-section|Similar Extensions}}
N/A
+
*[[Documentation/{{documentation/version}}/Modules/GradientAnisotropicDiffusion|Gradient Anisotropic Diffusion]]
  
 
<!-- ---------------------------- -->
 
<!-- ---------------------------- -->
Line 79: Line 72:
  
 
Repositories:
 
Repositories:
* Source code: [https://github.com/CSIM-Toolkits/Slicer GitHub repository]
+
* Source code: [https://github.com/CSIM-Toolkits/AnomalousFiltersExtension/ GitHub repository]
* Issue tracker:  [https://github.com/CSIM-Toolkits/Slicer/issues open issues and enhancement requests]
+
* Issue tracker:  [https://github.com/CSIM-Toolkits/AnomalousFiltersExtension/issues open issues and enhancement requests]
  
 
<!-- ---------------------------- -->
 
<!-- ---------------------------- -->
 
{{documentation/{{documentation/version}}/extension-footer}}
 
{{documentation/{{documentation/version}}/extension-footer}}
 
<!-- ---------------------------- -->
 
<!-- ---------------------------- -->

Latest revision as of 15:45, 9 November 2024

Home < Documentation < Nightly < Extensions < AnomalousFilters


For the latest Slicer documentation, visit the read-the-docs.


Introduction and Acknowledgements

This work was partially funded by CAPES and CNPq, a Brazillian Agencies. Information on CAPES can be obtained on the CAPES website and CNPq website.
Author: Antonio Carlos da S. Senra Filho, CSIM Laboratory (University of Sao Paulo, Department of Computing and Mathematics)
Contact: Antonio Carlos da S. Senra Filho <email>acsenrafilho@usp.br</email>

CSIM Laboratory  
University of Sao Paulo  
CNPq Brazil  
CAPES Brazil  


Extension Description

AnomalousDiffusionExtension-logo.png

Anomalous diffusion processes (ADP) are mathematically denoted by a power law in the Fokker-Planck equation, leading to the generalized form. There are several generalizations of the Fokker-Plank equation, which should give many different partial differential equations (PDEs). Here we adopted the so-called porous media equation, allowing the super-diffusive and the sub-diffusive processes [1]. In porous media, channels are created promoting or blocking the flow of the density function, which has been proved to provide a suitable application for MRI noise attenuation [2].

Basically, there are two different filters already implementing the anomalous diffusion process: the isotropic anomalous diffusion and anisotropic anomalous diffusion filters [3]. These filters were already applied on different imaging MR modalities, such as structural T1 and T2 images [4], diffusion-weighted images (DWI and DTI)[5][6], MRI relaxation T1 and T2 relaxometry[7] and to fMRI[8] as an initial study.

Modules

  • Structural image denoising with tissues border preservation function: AAD Image Filter
  • Structural image denoising without tissues border preservation function: IAD Image Filter
  • Diffusion-weighted MR image denoising with tissues border preservation: AAD on DWI Image
  • Echo-planar imaging denoising with tissues border preservation (fMRI and ASL): AAD on EPI Image

Use Cases

Most frequently used for these scenarios:

  • Use Case 1: Noise reduction as a pre-processing step for tissue segmentation
    • When dealing with single voxel classification schemes, a noise reduction pre-processing step is usually helpful to reduce data fluctuation due to acquisition artifacts (e.g. reducing the number of misclassified voxels).
  • Use Case 2: Volume rendering
    • Noise reduction will result in nicer looking volume renderings
  • Use Case 3: Noise reduction as part of image processing pipeline
    • Could offer a better segmentation and classification on specific brain image analysis such as in Multiple Sclerosis lesion segmentation

Similar Extensions

References

  • da S Senra Filho, A.C., Garrido Salmon, C.E. & Murta Junior, L.O., 2015. Anomalous diffusion process applied to magnetic resonance image enhancement. Physics in Medicine and Biology, 60(6), pp.2355–2373. DOI: 10.1088/0031-9155/60/6/2355
  • Filho, A.C. da S.S. et al., 2014. Anisotropic Anomalous Diffusion Filtering Applied to Relaxation Time Estimation in Magnetic Resonance Imaging. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp. 3893–3896.
  • Filho, A.C. da S.S., Barizon, G.C. & Junior, L.O.M., 2014. Myocardium Segmentation Improvement with Anisotropic Anomalous Diffusion Filter Applied to Cardiac Magnetic Resonance Imaging. In Annual Meeting of Computing in Cardiology.
  • Filho, A.C. da S.S. et al., 2014. Brain Activation Inhomogeneity Highlighted by the Isotropic Anomalous Diffusion Filter. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago: IEEE, pp. 3313–3316.
  • Senra Filho, A.C. da S., Duque, J.J. & Murta, L.O., 2013. Isotropic anomalous filtering in Diffusion-Weighted Magnetic Resonance Imaging. I. E. in M. and B. Society, ed. Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2013, pp.4022–5.

Information for Developers


Repositories:

  1. Tsallis, C. (2009). Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World. Springer.
  2. Da S Senra Filho, A. C., Garrido Salmon, C. E., & Murta Junior, L. O. (2015). Anomalous diffusion process applied to magnetic resonance image enhancement. Physics in Medicine and Biology, 60(6), 2355–2373. doi:10.1088/0031-9155/60/6/2355
  3. Da S Senra Filho, A. C., Garrido Salmon, C. E., & Murta Junior, L. O. (2015). Anomalous diffusion process applied to magnetic resonance image enhancement. Physics in Medicine and Biology, 60(6), 2355–2373. doi:10.1088/0031-9155/60/6/2355
  4. Da S Senra Filho, A. C., Garrido Salmon, C. E., & Murta Junior, L. O. (2015). Anomalous diffusion process applied to magnetic resonance image enhancement. Physics in Medicine and Biology, 60(6), 2355–2373. doi:10.1088/0031-9155/60/6/2355
  5. Senra Filho, A. C. da S., Duque, J. J., & Murta, L. O. (2013). Isotropic anomalous filtering in Diffusion-Weighted Magnetic Resonance Imaging. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2013, 4022–5. doi:10.1109/EMBC.2013.6610427
  6. Senra Filho, A. C. da S., Simozo, F. H., Salmon, C. E. G., & Murta Junior, L. O. (2014). Anisotropic anomalous filter as a tool for decreasing patient exam time in diffusion-weighted MRI protocols. In XXIV Brazilian Congress on Biomedical Engineering (pp. 0–3). Uberlandia.
  7. Filho, A. C. da S. S., Barbosa, J. H. O., Salmon, C. E. G. S., & Junior, L. O. M. (2014). Anisotropic Anomalous Diffusion Filtering Applied to Relaxation Time Estimation in Magnetic Resonance Imaging. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 3893–3896). IEEE. doi:10.1109/EMBC.2014.6944474
  8. Filho, A. C. da S. S., Rondinoni, C., Santos, A. C. dos, & Junior, L. O. M. (2014). Brain Activation Inhomogeneity Highlighted by the Isotropic Anomalous Diffusion Filter. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 3313–3316). Chicago: IEEE. doi:10.1109/EMBC.2014.6944331