Difference between revisions of "Modules:Plastimatch"
(14 intermediate revisions by 2 users not shown) | |||
Line 2: | Line 2: | ||
__NOTOC__ | __NOTOC__ | ||
− | ===Plastimatch=== | + | ===Plastimatch > B-spline Deformable Registartion=== |
{| | {| | ||
Line 22: | Line 22: | ||
===Module Description=== | ===Module Description=== | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | This is the plastimatch automatic (B-spline) deformable image registration module. It includes a multi-stage, multi-resolution pipeline, as well as multicore and GPU acceleration. Compared to other B-spline methods in 3d slicer, the plastimatch registration method might offer: | |
− | |||
− | + | # superior accuracy for CT-CT (or CT-CBCT) registration | |
+ | # faster results for MSE registration | ||
− | + | However, to date there have been no rigorous comparisons of the various 3D Slicer registration methods. | |
− | + | Examples of how this module is being used: | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | Examples of | ||
* Intra-subject registration for adaptive radiotherapy | * Intra-subject registration for adaptive radiotherapy | ||
* Inter-subject registration for automatic segmentation | * Inter-subject registration for automatic segmentation | ||
+ | |||
+ | == Usage == | ||
===Tutorials=== | ===Tutorials=== | ||
{| | {| | ||
− | |[[Image:plastimatch_tutorial_ppt.png|thumb|280px|[http://forge.abcd.harvard.edu/gf/ | + | |[[Image:plastimatch_tutorial_ppt.png|thumb|280px|[http://forge.abcd.harvard.edu/gf/download/frsrelease/110/1023/3D_Slicer_Plastimatch_Registration_Tutorial.ppt Download tutorial]]] |
|[[Image:plastimatch_tutorial_data.png|thumb|230px|[http://forge.abcd.harvard.edu/gf/download/frsrelease/85/1004/rider-lung-images.tar.gz Download tutorial data]]] | |[[Image:plastimatch_tutorial_data.png|thumb|230px|[http://forge.abcd.harvard.edu/gf/download/frsrelease/85/1004/rider-lung-images.tar.gz Download tutorial data]]] | ||
|} | |} | ||
Line 93: | Line 69: | ||
** '''Max Iterations:''' This option controls how many iterations of B-spline registration will be run in this stage. Usually there is no benefit beyond 200 iterations. Also, there is usually no harm in running extra iterations, except that it takes longer. | ** '''Max Iterations:''' This option controls how many iterations of B-spline registration will be run in this stage. Usually there is no benefit beyond 200 iterations. Also, there is usually no harm in running extra iterations, except that it takes longer. | ||
** '''Grid Spacing:''' The grid spacing parameter is a floating point number which controls the size of the B-spline control grid, in mm. Larger spacing means a smoother registration, while smaller spacing means a finer registration. | ** '''Grid Spacing:''' The grid spacing parameter is a floating point number which controls the size of the B-spline control grid, in mm. Larger spacing means a smoother registration, while smaller spacing means a finer registration. | ||
− | |[[Image:plastimatch_bspline_gui.png|thumb| | + | |[[Image:plastimatch_bspline_gui.png|thumb|380px|User Interface]] |
|} | |} | ||
Line 122: | Line 98: | ||
===Source code & documentation=== | ===Source code & documentation=== | ||
− | + | We recommended to download the latest source code from subversion: | |
− | |||
− | We recommended to download the latest source from subversion: | ||
*[http://forge.abcd.harvard.edu/gf/project/plastimatch/ Project page] | *[http://forge.abcd.harvard.edu/gf/project/plastimatch/ Project page] | ||
Line 133: | Line 107: | ||
== More Information == | == More Information == | ||
+ | |||
+ | ===About plastimatch=== | ||
+ | Plastimatch is an open source software for deformable image registration. It is designed for high-performance volumetric registration of medical images, such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). Software features include: | ||
+ | |||
+ | * B-spline method for deformable image registration (GPU and multicore accelerated) | ||
+ | * Demons method for deformable image registration (GPU accelerated) | ||
+ | * ITK-based algorithms for translation, rigid, affine, demons, and B-spline registration | ||
+ | * Pipelined, multi-stage registration framework with seamless conversion between most algorithms and transform types | ||
+ | * Landmark-based deformable registration using thin-plate splines for global registration | ||
+ | * Landmark-based deformable registration using radial basis functions for local corrections | ||
+ | * Broad support for 3D image file formats (using ITK), including Dicom, Nifti, NRRD, MetaImage, and Analyze | ||
+ | * Dicom and DicomRT import and export | ||
+ | * XiO import and export | ||
+ | * Plugins for 3D Slicer | ||
+ | |||
+ | Plastimatch also features two handy utilities which are not directly related to image registration: | ||
+ | |||
+ | * FDK cone-beam CT reconstruction (GPU and multicore accelerated) | ||
+ | * Digitally reconstructed radiograph (DRR) generation (GPU and multicore accelerated) | ||
===Acknowledgment=== | ===Acknowledgment=== | ||
Line 144: | Line 137: | ||
===References=== | ===References=== | ||
+ | * G Sharp, N Kandasamy, H Singh, M Folkert, "GPU-based streaming architectures for fast cone-beam CT image reconstruction and demons deformable registration," Physics in Medicine and Biology, 52(19), pp 5771-83, 2007. | ||
* V Boldea, G Sharp, SB Jiang, D Sarrut, "4D-CT lung motion estimation with deformable registration: Quantification of motion nonlinearity and hysteresis," Medical Physics, 33(3), pp 1008-18, 2008. | * V Boldea, G Sharp, SB Jiang, D Sarrut, "4D-CT lung motion estimation with deformable registration: Quantification of motion nonlinearity and hysteresis," Medical Physics, 33(3), pp 1008-18, 2008. | ||
* Z Wu, E Rietzel, V Boldea, D Sarrut, G Sharp, "Evaluation of deformable registration of patient lung 4DCT with sub-anatomical region segmentations," Medical Physics, 35(2), pp 775-81, 2008. | * Z Wu, E Rietzel, V Boldea, D Sarrut, G Sharp, "Evaluation of deformable registration of patient lung 4DCT with sub-anatomical region segmentations," Medical Physics, 35(2), pp 775-81, 2008. | ||
− | |||
* G Sharp et al. "Plastimatch - An open source software suite for radiotherapy image processing," Proceedings of the XVIth International Conference on the use of Computers in Radiotherapy, May, 2010. | * G Sharp et al. "Plastimatch - An open source software suite for radiotherapy image processing," Proceedings of the XVIth International Conference on the use of Computers in Radiotherapy, May, 2010. |
Latest revision as of 21:41, 14 February 2011
Home < Modules:PlastimatchReturn to Slicer 3.6 Documentation
Plastimatch > B-spline Deformable Registartion
General Information
Module Type & Category
Type: CLI
Category: Plastimatch
Authors, Collaborators & Contact
- Authors: See COPYRIGHT.TXT contained within the package
- Contact: Greg Sharp, Department of Radiation Oncology, Massachusetts General Hospital (gcsharp@partners.org)
- Web page: http://plastimatch.org
Module Description
This is the plastimatch automatic (B-spline) deformable image registration module. It includes a multi-stage, multi-resolution pipeline, as well as multicore and GPU acceleration. Compared to other B-spline methods in 3d slicer, the plastimatch registration method might offer:
- superior accuracy for CT-CT (or CT-CBCT) registration
- faster results for MSE registration
However, to date there have been no rigorous comparisons of the various 3D Slicer registration methods.
Examples of how this module is being used:
- Intra-subject registration for adaptive radiotherapy
- Inter-subject registration for automatic segmentation
Usage
Tutorials
Quick Tour of Features and Use
|
Development
Notes from the Developer(s)
Developer-oriented documentation is found on the plastimatch web site: http://plastimatch.org
Dependencies
This module has no dependencies.
Tests
Plastimatch features approximately 100 test cases.
Known bugs
Usability issues
Please report usability issues to the bug tracker.
Source code & documentation
We recommended to download the latest source code from subversion:
Documentation:
More Information
About plastimatch
Plastimatch is an open source software for deformable image registration. It is designed for high-performance volumetric registration of medical images, such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). Software features include:
- B-spline method for deformable image registration (GPU and multicore accelerated)
- Demons method for deformable image registration (GPU accelerated)
- ITK-based algorithms for translation, rigid, affine, demons, and B-spline registration
- Pipelined, multi-stage registration framework with seamless conversion between most algorithms and transform types
- Landmark-based deformable registration using thin-plate splines for global registration
- Landmark-based deformable registration using radial basis functions for local corrections
- Broad support for 3D image file formats (using ITK), including Dicom, Nifti, NRRD, MetaImage, and Analyze
- Dicom and DicomRT import and export
- XiO import and export
- Plugins for 3D Slicer
Plastimatch also features two handy utilities which are not directly related to image registration:
- FDK cone-beam CT reconstruction (GPU and multicore accelerated)
- Digitally reconstructed radiograph (DRR) generation (GPU and multicore accelerated)
Acknowledgment
National Institutes of Health
NIH / NCI 6-PO1 CA 21239
Federal share of program income earned by MGH on C06CA059267
Progetto Rocca Foundation
A collaboration between MIT and Politecnico di Milano
References
- G Sharp, N Kandasamy, H Singh, M Folkert, "GPU-based streaming architectures for fast cone-beam CT image reconstruction and demons deformable registration," Physics in Medicine and Biology, 52(19), pp 5771-83, 2007.
- V Boldea, G Sharp, SB Jiang, D Sarrut, "4D-CT lung motion estimation with deformable registration: Quantification of motion nonlinearity and hysteresis," Medical Physics, 33(3), pp 1008-18, 2008.
- Z Wu, E Rietzel, V Boldea, D Sarrut, G Sharp, "Evaluation of deformable registration of patient lung 4DCT with sub-anatomical region segmentations," Medical Physics, 35(2), pp 775-81, 2008.
- G Sharp et al. "Plastimatch - An open source software suite for radiotherapy image processing," Proceedings of the XVIth International Conference on the use of Computers in Radiotherapy, May, 2010.