Difference between revisions of "Documentation/Nightly/Extensions/ImageCompare"
From Slicer Wiki
Tag: 2017 source edit |
Tag: 2017 source edit |
||
Line 23: | Line 23: | ||
<!-- ---------------------------- -->{{documentation/{{documentation/version}}/module-section|Use Cases}} | <!-- ---------------------------- -->{{documentation/{{documentation/version}}/module-section|Use Cases}} | ||
+ | |||
+ | {| | ||
+ | |[[Image:SlicerSyntheticCTEvaluation_screenshot.png|thumb|340px|Input T1 Image]] | ||
+ | |} | ||
+ | |||
+ | <!-- ---------------------------- --> | ||
+ | {{documentation/{{documentation/version}}/module-section|Tutorials}} | ||
+ | |||
1. Load ground truth CT | 1. Load ground truth CT | ||
Line 31: | Line 39: | ||
4. Click Apply button | 4. Click Apply button | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<!-- ---------------------------- --> | <!-- ---------------------------- --> |
Revision as of 16:45, 23 January 2020
Home < Documentation < Nightly < Extensions < ImageCompare
For the latest Slicer documentation, visit the read-the-docs. |
Introduction and Acknowledgements
Extension: SyntheticCTEvaluation |
Module Description
This extension quantifies the similarity between a syntethic CT and a ground truth.
Use Cases
Tutorials
1. Load ground truth CT
2. Load synthetic CT
3. Load/generate a mask of patient's outilne
4. Click Apply button
Panels and their use
Similar Modules
References
- Spadea MF, Pileggi G, Zaffino P, Salome P, Catana C, Izquierdo-Garcia D, Amato F, Seco J. Deep Convolution Neural Network (DCNN) Multiplane Approach to Synthetic CT Generation From MR images—Application in Brain Proton Therapy. International Journal of Radiation Oncology* Biology* Physics. 2019 Nov 1;105(3):495-503.
Information for Developers
Section under construction. |