Difference between revisions of "Slicer-3.6-QA"
Line 17: | Line 17: | ||
|- | |- | ||
|style="background:white"|??||style="width:33%"| Volumes ||complete||yes and yes||yes and yes|| 0% || unknown | |style="background:white"|??||style="width:33%"| Volumes ||complete||yes and yes||yes and yes|| 0% || unknown | ||
− | | | + | |- |
|style="background:white"|??||style="width:33%"| DiffusionTensorTest || || || || 0% || unknown | |style="background:white"|??||style="width:33%"| DiffusionTensorTest || || || || 0% || unknown | ||
|- | |- |
Revision as of 14:09, 19 April 2010
Home < Slicer-3.6-QAReturn to Slicer 3.6 documentation
- This page contains our assessment of the Slicer 3.6 modules
- See also the module culling event at the end of April 2010
Testing Status
Score | Name | Documentation | Help [1] | Acknowledgment [2] | Test coverage [3] | valgrind errors |
---|---|---|---|---|---|---|
Gold | my module | complete | yes and yes | yes, yes, yes | 80% | 0 |
?? | Camera | complete | yes, no link | no | 0% | unknown |
?? | Volumes | complete | yes and yes | yes and yes | 0% | unknown |
?? | DiffusionTensorTest | 0% | unknown | |||
?? | DiffusionWeightedTest | 0% | unknown | |||
?? | DiffusionTensorEstimation | 0% | unknown | |||
?? | DiffusionTensorMathematics | 0% | unknown | |||
?? | OrientImage | 0% | unknown | |||
?? | LinearRegistration | 0% | unknown | |||
?? | RigidRegistration | 0% | unknown | |||
?? | AffineRegistration | 0% | unknown | |||
?? | BSplineDeformableRegistration | 0% | unknown | |||
?? | TestGridTransformRegistration | 0% | unknown | |||
?? | CheckerBoard | 0% | unknown | |||
?? | ResampleVolume | 0% | unknown | |||
?? | PolyDataToLabelmap | 0% | unknown | |||
?? | GaussianBlurImageFilter | 0% | unknown | |||
?? | ConfidenceConnected | 0% | unknown | |||
?? | ExecutionModelTour | 0% | unknown | |||
?? | ImageReadDicomWrite | 0% | unknown | |||
?? | CurvatureAnisotropicDiffusion | 0% | unknown | |||
?? | GradientAnisotropicDiffusion | 0% | unknown | |||
?? | MedianImageFilter | 0% | unknown | |||
?? | DWIDicomLoad | 0% | unknown | |||
?? | HistogramMatching | 0% | unknown | |||
?? | OtsuThresholdImageFilter | 0% | unknown | |||
?? | OtsuThresholdSegmentation | 0% | unknown | |||
?? | Subtract | 0% | unknown | |||
?? | Multiply | 0% | unknown | |||
?? | Add | 0% | unknown | |||
?? | Threshold | 0% | unknown | |||
?? | Mask | 0% | unknown | |||
?? | Cast | 0% | unknown | |||
?? | VotingBinaryHoleFillingImageFilter | 0% | unknown | |||
?? | ModelMaker | 0% | unknown | |||
?? | MultipleModelsExample | 0% | unknown | |||
?? | GrayscaleModelMaker | 0% | unknown | |||
?? | MergeModels | 0% | unknown | |||
?? | GrayscaleFillHoleImageFilter | 0% | unknown | |||
?? | GrayscaleGrindPeakImageFilter | 0% | unknown | |||
?? | LabelMapSmoothing | 0% | unknown | |||
?? | ImageLabelCombine | 0% | unknown | |||
?? | ResampleVolume2 | 0% | unknown | |||
?? | ZeroCrossingBasedEdgeDetectionImageFilter | 0% | unknown | |||
?? | FreesurferSurfaceSectionExtraction | 0% | unknown |
Testing Partition
Most Slicer modules have a GUI component and a Data Processing component.
Testing GUI components is still a challenge, so we will focus here on testing the Data Processing components. This can be done in most cases by partitioning the module into a GUI section and a Data Processing section, where the second one usually takes the form of a C++ class (although that is not a requirement).
The data processing section can be tested by using standard CTest/CMake mechanisms. Basically by adding ADD_TEST() entries to the CMakeLists.txt file of the module.
Luis Ibanez' scoring system
The following scoring will be applied to the data processing sections of all modules:
Score | Code Coverage | Valgrind Errors | Documentation | Tutorial |
---|---|---|---|---|
Gold | > 80% | 0 | yes | yes |
Silver | > 70% | < 10 | yes | yes |
Bronze | > 60% | < 50 | yes | yes |
Clay | > 50% | < 100 | yes | yes |
Coal | > 50% | > 100 | yes | yes |
Hazard | unknown | unknown | no | no |
The code coverage and Valgrind error must be the ones reported on the Nightly Slicer Dashboard. Anecdotal data is not acceptable.